http://1.bp.blogspot.com/l9cmlQrH7CY/VA_vWukP83I/AAAAAAAAACs/FqeN5wOqL1M/s1600/linea.png
Este es un instrumento recolector de datos que subyacen nuestras necesidades y las de otros,es importante para guardar recolectar y dar a conoce los conocimientos que hemos obtenido durante esta carrera.
martes, 29 de noviembre de 2016
LA HISTORIA DE LAS MATEMÁTICAS
Cauchy,
building on the work on Lagrange functions, began a rigorous analysis and began
the study of the theory of functions of a complex variable. This work would be
continued by Weierstrass and Riemann.
ALGERAIC GEOMETRY
"One
of the first calculators was invented by Pascal in 1642. The sum was done by
turning the wheels with a stylus, but other operations were really difficult.
"Charles
Babbage, in nineteenth-century England, designed a machine capable of
performing mathematical operations automatically by following a list of
instructions (program) written on cards or tapes. Babbage's imagination
surpassed the technology of his time, and it was not until the invention of the
relay, the vacuum valve and then the transistor when large-scale programmable
computation became reality. This advance has given a great impetus to certain
branches of mathematics, such as numerical analysis and finite mathematics, and
has generated new areas of mathematical research such as the study of
algorithms. It has become a powerful tool in fields as diverse as number
theory, differential equations, and abstract algebra. In addition, the computer
has been able to find the solution to several mathematical problems that had
not been solved previously, such as the topological problem of the four colors
proposed in the mid-nineteenth century. The theorem states that four colors are
sufficient to draw any map, with the condition that two bordering countries
must have different colors. This theorem was demonstrated in 1976 using a
computer with high computational capacity at the University of Illinois (United
States).
"The
Museum of Science of London built in 1991, the first complete Difference Engine
in honor of the birth of Charles Babbage. It has about 4000 pieces and weighs
more than 2.5 tons. The device as Babbage conceived it would be an automated
computer with printer output and powered by a steam engine. "Recreation of
the Colossus decoding computer at Bletchley Park (1997). It is the first
programmable electronic computer in the world. He helped cryptographers
discover the keys to German Lorenz during World War II. Also mathematics today
is taught and learned more easily through tics.
ALGUNOS PERSONAJES IMPORTANTES EN LA EVOLUCION DE LAS MATEMATICAS
THALES DE MILETO
Tales fue un filósofo griego,
estadista, matemático, astrónomo e ingeniero. Según se señala en los escritos
conservados, Tales habría demostrado teoremas geométricos sobre la base de
definiciones y premisas con ayuda de reflexiones sobre la simetría. Tales
aspiraba a encontrar una explicación racional del universo. El teorema sobre la
proporcionalidad de los segmentos correspondientes al cortar rectas
concurrentes por líneas paralelas se llama teorema de Tales en su honor.
ISAAC NEWTON

Recibió el título de
profesor en 1668. Durante esa época se dedicó al estudio e investigación de los
últimos avances en matemáticas y a la filosofía natural, que consideraba la
naturaleza como un organismo de mecánica compleja.
Isaac Newton fue un
matemático y físico británico, considerado uno de los más grandes científicos
de la historia, que hizo importantes aportaciones en muchos campos de la
ciencia. Sus descubrimientos y teorías sirvieron de base a la mayor parte de
los avances científicos desarrollados desde su época. Newton fue, junto al
matemático alemán Gottfried Wilhelm Leibniz, uno de los inventores de la rama
de las matemáticas denominada cálculo. También resolvió cuestiones relativas a
la luz y la óptica, formuló las leyes del movimiento y dedujo a partir de ellas
la ley de la gravitación universal.
GOTTFRIED WILHELM LEIBNIZ
Nació el 1 de julio
de 1646 en Leipzig, Sajonia (hoy Alemania) y murió el 14 de noviembre de 1716
en Hannover (hoy Alemania).
Empezó sus estudios a
la edad de 7 años, destacaba en latín y griego. En esta época comenzó a
interesarse por la filosofía, estudió los libros de su padre y leyó libros de
metafísica y teología de autores católicos y protestantes.
En 1661, con 14 años,
entró en la Universidad de Leipzig. Estudió filosofía y matemáticas. Finalizó
sus estudios en 1663, con la tesis De principio Individual.
La contribución de
Leibniz a las matemáticas consistió en enumerar en 1675 los principios fundamentales
del cálculo infinitesimal. Esta explicación se produjo con independencia de los
descubrimientos del científico inglés Isaac Newton, cuyo sistema de cálculo fue
inventado en 1666. El sistema de Leibniz fue publicado en 1684, el de Newton en
1687, y el método de notación ideado por Leibniz fue adoptado universalmente
(véase Signos matemáticos). En 1672 también inventó una máquina de calcular
capaz de multiplicar, dividir y extraer raíces cuadradas. Es considerado un
pionero en el desarrollo de la lógica matemática.
L'HÔPITAL
Taylor nació el 18 de
agosto de 1685 en Edmonton (Inglaterra) y murió el 29 de diciembre de 1731 en
Londres (Inglaterra)
Taylor fue educado
con tutores privados hasta que entró, en 1703, en St. John's College de Cambridge,
en donde se convirtió en un admirador de la obra de Newton..
Se graduó en 1709,
pero ya en 1708 había escrito su primera obra importante, aunque no se publicó
hasta 1714 en una revista de la Royal Society: dio solución al problema del
centro de oscilación, la cual desde que fuera difundida hasta 1724, resultaba
ser la disputa prioritaria con Johann Bernoulli.
Taylor participó, en
este año, en el comité que se constituyó para zanjar la disputa sobre quién
había sido el fundador del Cálculo, Newton o Leibniz.
En 1715 publicó
Methodus incrementorum directa et inversa, su obra más importante, y
Perspectiva Lineal, dos libros importantes en la historia de las matemáticas.
Taylor da cuenta de un experimento para descubrir las leyes de la atracción
magnética (1715) y un método no probado para aproximar las raíces de una
ecuación dando un método nuevo para logaritmos computacionales (1717).
GABRIEL CRAMER
Nació el 31 de julio
de 1704 en Ginebra (Suiza) y falleció el 4 de enero de 1752 en Bagnols-sur-Cède
(Francia). Fue un conocido matemático que centró su trabajo en el análisis y
los determinantes. Llegó a ser profesor de matemáticas de la Universidad de
Ginebra durante el período 1724-27. En 1750 ocupó la cátedra de filosofía en la
citada universidad. En 1731 presentó en la Academia de las Ciencias de París,
una memoria sobre las causas de la inclinación de las órbitas de los planetas.
Editó las obras de Jean Bernouilli (1742) y Jacques Bernouilli (1744) y el
Comercium epistolarum de Leibniz. Su obra fundamental es la Introduction à
l'analyse des courbes algébriques (1750), en la que se desarrolla la teoría de
las curvas algébricas según los principios newtonianos.
Escribió un trabajo
donde relataba la física, también en geometría y la historia de las
matemáticas. Cramer es más conocido por su trabajo en determinantes (1750) pero
también hizo contribuciones en el estudio de las curvas algebraicas (1750)
http://www.taringa.net/post/ciencia-educacion/10032650/Los-Diez-matematicos-mas-importantes-de-la-historia.html
https://es.wikipedia.org/wiki/Anexo:Matem%C3%A1ticos_importantes
TRADUCTION

Thales was a Greek philosopher, statesman, mathematician, astronomer, and engineer. As noted in the preserved writings, Tales would have demonstrated geometrical theorems on the basis of definitions and premises with the help of reflections on symmetry. Such aspired to find a rational explanation of the universe. The theorem on the proportionality of the corresponding segments by cutting straight lines along parallel lines is called the theorem of Thales in his honor.
He was born on 25 December 1642 (according to the
Julian calendar then in force, 4 January 1643, according to the current
calendar), in Woolsthorpe, Lincolnshire (England). He died in 1727. When he was
three years old, his widowed mother remarried and left him in the care of his
grandmother. When widowed for the second time, he decided to send him to an
elementary school in Grantham. In the summer of 1661 he entered Trinity College
at the University of Cambridge and in 1665 received his bachelor's degree.
He was born on 1 July 1646 in Leipzig, Saxony (now Germany)
and died on November 14, 1716 in Hannover (now Germany).
Taylor was born on August 18, 1685 in Edmonton
(England) and died on December 29, 1731 in London (England)
He was born on July 31, 1704 in Geneva, Switzerland,
and died on 4 January 1752 in Bagnols-sur-Cède (France). He was a well-known
mathematician who focused his work on analysis and determinants. He became
professor of mathematics at the University of Geneva during the period 1724-27.
In 1750 he held the chair of philosophy at the university. In 1731 he presented
at the Academy of Sciences of Paris a report on the causes of the inclination
of the orbits of the planets. He edited the works of Jean Bernouilli (1742) and
Jacques Bernouilli (1744) and Leibniz's Comercium epistolarum. Its fundamental
work is the Introduction à l'analyze de courbes algébriques (1750), in which
the theory of the algebraic curves is developed according to the Newtonian
principles.
TRADUCTION
SOME IMPORTANT CHARACTERS IN THE EVOLUTION OF
MATHEMATICS
THALES OF MILETO

Thales was a Greek philosopher, statesman, mathematician, astronomer, and engineer. As noted in the preserved writings, Tales would have demonstrated geometrical theorems on the basis of definitions and premises with the help of reflections on symmetry. Such aspired to find a rational explanation of the universe. The theorem on the proportionality of the corresponding segments by cutting straight lines along parallel lines is called the theorem of Thales in his honor.
ISAAC NEWTON

He received the title of professor in 1668. During
that time he devoted himself to the study and research of the latest advances
in mathematics and to natural philosophy, which considered nature as an
organism of complex mechanics.
Isaac Newton was a British mathematician and
physicist, considered one of the greatest scientists in history, who made
important contributions in many fields of science. His discoveries and theories
served as the basis for most of the scientific advances developed since his
time. Newton was, along with the German mathematician Gottfried Wilhelm
Leibniz, one of the inventors of the branch of mathematics called calculus. He
also solved questions concerning light and optics, formulated the laws of
motion, and deduced from them the law of universal gravitation.
GOTTFRIED WILHELM LEIBNIZ

He began his studies at the age of 7, emphasizing in
Latin and Greek. At this time he became interested in philosophy, studied his
father's books and read books of metaphysics and theology of Catholic and
Protestant authors.
In 1661, at age 14, he entered the University of
Leipzig. He studied philosophy and mathematics. He finished his studies in
1663, with the thesis Of individual principle.
Leibniz's contribution to mathematics consisted in
enumerating in 1675 the fundamental principles of infinitesimal calculus. This
explanation took place independently of the discoveries of the English
scientist Isaac Newton whose system of calculation was invented in 1666.
Leibniz's system was published in 1684, Newton's in 1687, and the notion method
devised by Leibniz was universally adopted (See Mathematical Signs). In 1672 he
also invented a calculating machine capable of multiplying, dividing and
extracting square roots. He is considered a pioneer in the development of
mathematical logic.
L'HÔPITAL

Taylor was educated with private tutors until he
entered, in 1703, at St. John's College, Cambridge, where he became an admirer
of Newton's work.
He graduated in 1709, but already in 1708 had written
his first important work, although it was not published until 1714 in a
magazine of the Royal Society: it gave solution to the problem of the center of
oscillation, which since it was diffused until 1724, turned out to be The
priority dispute with Johann Bernoulli.
Taylor participated in this year in the committee that
was set up to settle the dispute over who had been the founder of the Calculus,
Newton or Leibniz.
In 1715 he published Methodus incrementorum direct et
inversa, his most important work, and Linear Perspective, two important books
in the history of mathematics. Taylor gives an account of an experiment to
discover the laws of magnetic attraction (1715) and an unproven method to
approximate the roots of an equation by giving a new method for computational
logarithms (1717).
GABRIEL CRAMER

He wrote a paper where he related physics, also in
geometry and the history of mathematics. Cramer is best known for his work on
determinants (1750) but also made contributions in the study of algebraic
curves (1750)
viernes, 7 de octubre de 2016
Historia de las matemáticas
Este texto genera una amplia comprensión de la
historia de las matemáticas, porque permite al estudiante familiarizarse de una
manera clara con la historia de las matemáticas e ir descubriendo nuevos
conocimientos por su puesto confrontándolos con la realidad del diario
vivir. Logrando de esta manera una comprensión clara y concisa de cada tema
tratado.
Las matemáticas tienen una larga historia que
comenzó con estudios e investigaciones que lograron al traspaso del tiempo ir
modificando contenidos relacionados con cada disciplina. Esto se debe al gran
esfuerzo de muchas personas de diferentes culturas y lengua que realizaban sus
aportes a lo largo del tiempo. Los descubrimientos y propuestas que aporte cada
personaje fueron tan relevantes para la construcción de saberes en cada tema
específico
Podemos observar que la vida del ser humano está
hecha de y por las matemáticas, de cierta manera en el accionar de la
humanidad se evidencia las operaciones y gracias a cada uno de los
aportes que realizaron nuestros filósofos y matemáticos.
Las matemáticas son el estudio de las relaciones
entre cantidades, magnitudes y propiedades, y de las operaciones lógicas
utilizadas para deducir cantidades, magnitudes, propiedades desconocidas. Las
matemáticas son tan antiguas como la propia humanidad. Las matemáticas
avanzadas y organizadas fueron desarrolladas en el tercer milenio a.C., en
Babilonia y Egipto, las cuales estaban dominadas por la aritmética, con cierto
interesen medidas y cálculos geométricos.
Los primeros libros egipcios, muestran un sistema
de numeración decimal con símbolos diferentes en donde utilizaban la potencia
de diez y de ahí impartían el conocimiento de diferentes maneras y estrategias
para explicar su contenido.
Tiempo más tarde, los babilonios
desarrollaron matemáticas más sofisticadas, lo cual les permitió encontrar las
raíces positivas de cualquier ecuación de segundo grado. También lograron
encontrar las raíces de algunas ecuaciones de tercer grado, y resolvieron
problemas más complicados utilizando el teorema de Pitágoras. Los descubridores
egipcios más importantes fueron Tales de Mileto y Pitágoras de Samos, quien
explicó la importancia del estudio de los números para poder entender el mundo.
Uno de los principales interesados en la geometría fue Demócrito, quien
encontró la fórmula para calcular el volumen de una pirámide, aunque
Hipócrates, descubrió que el área de figuras geométricas en forma de media luna
limitadas por arcos circulares son iguales a las de ciertos triángulos, lo cual
está relacionado con el problema de la cuadratura del círculo, que consiste en
construir un cuadrado de área igual a un círculo.
Finalmente las matemáticas es un constructor de
grandes pensadores que buscaban que las matemáticas se orientaran de manera
clara flexible y con diferentes formas y estrategias a la comunidad
estudiantil. Porque el saber matemática no está hecho, sino que los
conocimientos y su orientación hacen que el ser humano los retomen y aplique en
su vida diaria con práctica y eficacia, de hecho estos conocimientos los vamos
reformando cada día por su aplicación y uso cotidiano.
TRADUCTION
History of Mathematics
This text generates a broad understanding of the
history of mathematics because it enables the student to become familiar with
the history of mathematics in a clear way and to discover new knowledge by
comparing them with the reality of everyday life. In this way, a clear and
concise understanding of each topic will be achieved.
Mathematics has a long history that began with studies
and research that managed to pass the time and modify content related to each
discipline. This is due to the great effort of many people of different
cultures and language who made their contributions over time. The discoveries
and proposals that each character contributed were so relevant for the construction
of knowledge in each specific topic
We can observe that the life of the human being is
made of and by mathematics, in a certain way in the actions of humanity, the
operations are evidenced and thanks to each one of the contributions made by
our philosophers and mathematicians.
Mathematics is the study of the relationships between
quantities, magnitudes and properties, and of the logical operations used to
deduce quantities, magnitudes, properties unknown. Mathematics is as old as
humanity itself. Advanced and organized mathematics were developed in the third
millennium BC in Babylon and Egypt, which were dominated by arithmetic, with
some interest in geometric measurements and calculations.
The first Egyptian books show a system of decimal
numbering with different symbols where they used the power of ten and from
there impart knowledge in different ways and strategies to explain its content.
Later, the Babylonians developed more
sophisticated mathematics, which allowed them to find the positive roots of any
equation of the second degree. They also managed to find the roots of some
third-degree equations, and solved more complicated problems using the
Pythagorean theorem. The most important Egyptian discoverers were Tales of
Miletus and Pythagoras of Samos, who explained the importance of the study of
numbers in order to understand the world. One of the main interested in
geometry was Democritus, who found the formula for calculating the volume of a
pyramid, although Hippocrates, discovered that the area of geometric figures
in the shape of crescent limited by circular arcs are equal to those of certain
triangles, Which is related to the problem of squaring the circle, which
consists of constructing a square of area equal to a circle.
Finally, mathematics is a constructor of great thinkers
who wanted mathematics to be oriented in a clear and flexible way with
different forms and strategies to the student community. Because the
mathematical knowledge is not done, but the knowledge and its orientation make
it possible for the human being to retake and apply them in their daily life
with practice and efficiency, in fact this knowledge is being reformed every
day by its application and daily use.
TRADUCTION
History of Mathematics
This text generates a broad understanding of the
history of mathematics because it enables the student to become familiar with
the history of mathematics in a clear way and to discover new knowledge by
comparing them with the reality of everyday life. In this way, a clear and
concise understanding of each topic will be achieved.
Mathematics has a long history that began with studies
and research that managed to pass the time and modify content related to each
discipline. This is due to the great effort of many people of different
cultures and language who made their contributions over time. The discoveries
and proposals that each character contributed were so relevant for the construction
of knowledge in each specific topic
We can observe that the life of the human being is
made of and by mathematics, in a certain way in the actions of humanity, the
operations are evidenced and thanks to each one of the contributions made by
our philosophers and mathematicians.
Mathematics is the study of the relationships between
quantities, magnitudes and properties, and of the logical operations used to
deduce quantities, magnitudes, properties unknown. Mathematics is as old as
humanity itself. Advanced and organized mathematics were developed in the third
millennium BC in Babylon and Egypt, which were dominated by arithmetic, with
some interest in geometric measurements and calculations.
The first Egyptian books show a system of decimal
numbering with different symbols where they used the power of ten and from
there impart knowledge in different ways and strategies to explain its content.
Later, the Babylonians developed more
sophisticated mathematics, which allowed them to find the positive roots of any
equation of the second degree. They also managed to find the roots of some
third-degree equations, and solved more complicated problems using the
Pythagorean theorem. The most important Egyptian discoverers were Tales of
Miletus and Pythagoras of Samos, who explained the importance of the study of
numbers in order to understand the world. One of the main interested in
geometry was Democritus, who found the formula for calculating the volume of a
pyramid, although Hippocrates, discovered that the area of geometric figures
in the shape of crescent limited by circular arcs are equal to those of certain
triangles, Which is related to the problem of squaring the circle, which
consists of constructing a square of area equal to a circle.
Finally, mathematics is a constructor of great thinkers
who wanted mathematics to be oriented in a clear and flexible way with
different forms and strategies to the student community. Because the
mathematical knowledge is not done, but the knowledge and its orientation make
it possible for the human being to retake and apply them in their daily life
with practice and efficiency, in fact this knowledge is being reformed every
day by its application and daily use.
Suscribirse a:
Entradas (Atom)